Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Pakistan Journal of Pharmaceutical Sciences. 2017; 30 (1[suppl]): 313-324
in English | IMEMR | ID: emr-186534

ABSTRACT

Elicitation by chemical means including heavy metals is one of a new technique for drug discoveries. In this research, the effect of heavy metals on marine actinobacteria Streptomyces sp. H-1003 for the production of enterocin, with a strong broad spectrum activity, along optimized fermented medium was firstly investigated. The optimum metal stress conditions consisted of culturing marine actinobacteria strain H-1003 with addition of cobalt ions at 2mM in optimized Gause's medium having starch at 20mg/L for 10 days at 180 revolution/min. Under these conditions, enterocin production was enhanced with a value of 5.33mg/L, which was totally absent at the normal culture of strain H-1003 and much higher than other tested metal-stress conditions. This work triumphantly announced a prodigious effect of heavy metals on marine actinobacteria with fringe benefits as a key tool of enterocin production

2.
Biomolecules & Therapeutics ; : 559-559, 2016.
Article in English | WPRIM | ID: wpr-201372

ABSTRACT

The authors request to correct the title of Table 3.

3.
Biomolecules & Therapeutics ; : 347-362, 2016.
Article in English | WPRIM | ID: wpr-68879

ABSTRACT

Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge's derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines.


Subject(s)
Humans , Carbon , In Vitro Techniques , Pharmacokinetics , Porifera , Skeleton
SELECTION OF CITATIONS
SEARCH DETAIL